This article is part of a 3-part series on familiar foods with surprising backstories. Part One: What is the past, present and future of the humble vanilla bean, a tasty and lucrative crop that pits biotechnology against traditional knowledge and sustainable farming?
Read Part Two: What Does Bill Gates Have To Do With Ethiopian Chickens? and Part Three: GMOs and Heritage Corn: Protecting the Source of Life
There's a new genetic engineering technique in town: Synthetic biology, or "synbio" — and it's already on store shelves. Synbio techniques generally exploit genetically modified microorganisms such as yeast or algae to produce compounds for industrial or commercial use. On ingredient labels, these compounds might even be listed as "natural flavors"! In 2014, synbio vanilla became the first product of this technique on the market.
How, you may wonder, can a synbio product created by engineered yeast microbes be marketed as a natural flavor? The dubious description is based on the molecular makeup of the finished compound — not on the method of production, and definitely not on the genetic engineering that made it possible.
Synbio is a new twist in the winding road of biotechnology. What does synbio mean for the future of the most popular flavor in the world?
Biopirates of the Caribbean
The flavor many of us know and love comes from the beans of a flowering orchid vine native to Mesoamerica. Europeans landing in the Americas in the 16th century took vanilla away with them. They distributed vines throughout the tropics, following the routes of imperial expansion: The British, Spanish and Dutch all tried to produce vanilla in colonized lands in Southeast Asia.
But, for 300 years, the vines remained fruitless.
We know now the missing ingredient was the pollinator. Flowers don't produce beans without pollination. Vanilla's natural habitat is also home to unique insects, perfectly sized and shaped to access the deep recesses of the flower. Foreign pollinators couldn't do the job, and vanilla production stalled.
This drought would have continued if not for the innovation of a 12-year-old boy named Edmond.
How a slave created an industry
For centuries, horticulturists and naturalists tried to coax vanilla vines into productivity. The breakthrough finally came when a slave in the French colony of Bourbon developed the hand pollination technique still used today. Le geste d'Edmond, or "Edmond's gesture," was fundamental to the lucrative natural vanilla market, but Edmond himself never benefited from it. Because he was a young Black slave, his innovation was doubted, derided and ultimately appropriated.
The modern vanilla market is centered in the region where Edmond lived, where a subtle flavor once harvested by Indigenous peoples, taken by colonizers and finally brought into production by a slave still flourishes.
Natural vanilla is the most popular flavor in the world, and demand far exceeds what the vines produce. To supply the difference, chemists developed artificial versions derived from wood pulp or petrochemicals. Artificial vanilla appears in a range of products, from candles to candy.
However, artificial vanilla made without genetic engineering doesn't displace natural vanilla farming because labeling restrictions prevent it from being called a natural flavor. Synbio vanilla, on the other hand, is the product of new and insufficiently regulated technology. Corporate marketing materials use language such as "all natural" to describe their product, ignoring that synbio products are created in vats in warehouses. This puts synbio vanilla directly in the path of the natural vanilla market — and the 200,000+ jobs in sustainable agroforestry that go with it.
Savor vanilla. Save the world.
Vanilla vines thrive in rainforest conditions where they climb native trees. They coexist happily with flora and fauna and can even be grown alongside coffee or other food crops. Traditional vanilla farming is a low-impact, high-benefit farming system that supports the conservation of biodiverse rainforests.
The people who grow vanilla mostly do so in developing economies where jobs and security are rare. They apply specialized skills to support their families and preserve diverse ecosystems. In some regions, vanilla farming also has a profound cultural significance, as one farmer explains: "For my community, the value of vanilla goes way beyond economic factors. It has a cultural value and really it represents an identity for us."
Why synbio is a no-go
Reliance on synbio vanilla would destroy the livelihood of skilled farmers in the Global South. Vibrant forest farms would likely be converted into sugar plantations, supplying fuel for those modified yeasts bubbling away in distant warehouses. Deforestation, industrial agriculture and genetic engineering would replace diverse and healthy forest farms.
And then there is the loss of the incomparable taste and scent of natural vanilla, a complexity that comes from the soil where it grows, the vegetation it neighbors, and the diet of the pollinators in its Mexican homeland. These kinds of dynamic, interactive systems can never be replicated in a warehouse.